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ABSTRACT

We investigate the stability of two phase Couette flow of different liquids bounded between

plane parallel plates. One of the plates has a time dependent velocity in its own plane, which
is composed of a constant steady part and a time harmonic component. In the absence of time

harmonic modulations the flow can be unstable to an interfacial instability if the viscosities

are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet

theory, we show analytically in the limit of long waves, that time periodic modulations in

the basic flow can have a significant influence on flow stability. In particular, flows which

are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely

by the inclusion of background modulations, a finding that can have useful consequences in

many practical applications.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-19480 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hamptr,, VA 23681.
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1 Introduction

It is well known that plane Couette flow of two superposed fluids of different viscosities

can be unstable. This instability is absent when the viscosities are equal and is a result of

an interfacial deflection growing due to viscosity stratification. This mechanism was first

described by Yih (1967), who used perturbation theory to obtain an analytic expre.ssion for

the growth rate in the long wavelength limit. The results can) be summarized as follows (for

clarity, in the absence of gravity): Instability is possible only if the viscosities are different.

Arrangements where the more viscous fluid occupies a thinner layer than the less viscous one

are unstable, whereas converse arrangements are linearly stable to long waves. The inst ability

is present at all Reynolds numbers, although in the limit of zero Reynolds number the growth

rates become asymptotically small. Flow, therefore, is necessary to excite growing waves.

Moderate surface tension is negligible to leading order for long waves, but acts to stabilize

very short waves. Yih's work was extended more recently by other investigators. Hooper

and Boyd (1983) considered the linear stability of two co-flowing viscous liquids of different

viscosities separated by an interface and extending to infinity. This is 'ih's problem iii the

absence of walls and can be used as a useful model in the study of short waves (short waves

at the interface would not feel the effect of the walls, to leading order at least). Instability

is found in all cases. Long waves are stable for all viscosity ratios, while short waves.. i

the absence of surface tension are unstable with asymptotically small growth rates - when

included, surface tension damps out all waves which are short enough. Disturbances with

general wavelengths are unstable and a maximum growth rate is attained at some viscosity

ratio. This work was extended by Hooper (1985) who included a bounding moving wall for

the lower fluid. The flow is shown to be unstable to long waves as long as the bounded layer

is also the more viscous one, in agreement with Yih's findings. An explicit expression for

the eigenvalues is also given in terms of Airy functions.

The stability of Yih's problem for general disturbances and including density differences

and surface tension, was first solved numerically by Renardy (1985). She presents specific

examples that show that the general long wavelength result described by Yih andl Hooper

and Boyd, can be extended to interfacial waves of arbitrary wavelengths. Another interesting

feature is the finding of a second mode of instability at relatively high Reynolds numbers;

this second mode has long wavelength and growth rates comparable to the first interfacial

mode. Renardy (1987) carried out an analytical study ,J the s",ve problem but for fluilds

with slightly different mechanical properties. Analytical expressions for the eigenvalhes are

constructed and instability is established in the thin layer limit if the thin layer is occupied

by the moue viscous fluid.



The stability characteristics of oscillatory flows are imich umore c',; plicated han tIhose

of their steady counterparts. There are many examples where the inclusion of all oscillatory

component to the steady flow can enhance or reduce stability (for plane Pois,,eile flow, for

example, see Grosch and Salwen (1968), Hall (1975), von Kerczek ( 1982): for a review on I he

stability of oscillatory flows s'-e Davis (1975)). As far as we know the stability of oscillatory

two-phase viscous flow has not been studied. Yih (1968) considered the stability of a visCOUs

fluid layer on a flat plate performing a simple harmonic motion in its own plane. There is no

viscosity stratification (the upper fluid is air) and the flow in the absence of the os-cillatioii

contains no steady velocity component and is linearly stable. Yih showed. using a long wave

Floquet theory, that the oscillatory flow can become unstable even though ill the absence

of oscillations the flow is stable. This wa,. extended by von Kerczek (1987) to flow down

a vertical plate which is performing a simple harmonic motion in its own plane. This flow

is unstable even in the absence of oscillations and von Kerczek uses Yih's long wavelength

expansion to establish windows of instability. Our interest is to apply such a study to all

oscillatory two-phase flow. In the problem we study here, depending on the fluid occulpation

areas in the unperturbed state (see earlier comments), the flow can be stable or unstable. In

the former case, therefore, a quasi-static approach would yield background velocity profiles

for each instant in time (time is treated as a parameter in quasi-steady theories) which are

linearly stable while in the latter instance instability ensues for all parametrized profiles. A

more yielding approach is that of Floquet theory where stability or instability is judged on

the overall growth or decay with time of a perturbation over a complete period of the forced

oscillation. Analytically this means that time-periodic solutions are constructed which can

amplify, remain neutral or decay depending on whether the Floquet exponent is positive.

zero or negative. We present representative results for several cases which in the absence

of background oscillations the flow is unstable while imposed oscillations can stabilize the

flow completely. On the other hand, flows which are stable can become unstable. We note

that all the results given here are in terms of explicit but long formulae which yield stability

results with little computational effort. Such explicit solutions are of considerable value in

the generalization of the stability problem to arbitrary wavenumbers by use of Continuation

methods for instance.

The article is organized as follows. Section 2 derives the undisturbed flow as at exact

shear flow solution of the Navier-Stokes equations. In Section 3 tie linear stability problem is

formulated and the interfacial conditions are written down. Explicit solutions are developed

by ait expansion proc, "lire rarried oit to three orders, so that we may delermnin tle first

stage wheri- the expansion of the !'Floqmet extn(mopnt. is i real tert,' !I' ' .... lion .1 we ,es,.

the results of the stlbihity analysis and( finally in Section 5• we draw some conch 'isiois.
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2 The basic state

Two incompressible fluids of equal densities, p, and different viscosities, o'ccupy a region

of depth L between parallel infinite flat plates. The lower plate is fixed aid the tipper

plate moves in its plane, with a steady velocity V0. together with superposed sinusoidal

oscillations, so that its velocity at time t* is given by U0 + A cos (.'t). The ftuids are assumed

to be immiscible and form separate layers, the upper fluid has viscosity III, the lower fluid

has viscosity pt2 and a depth D. We denote these as regions (I) and (1I) respectively.

We look for exact solutions of the Navier-Stokes equations for a constant interface posit ion

and velocity component in the streamwise direction alone which depends on time and the

vertical coordinate only. Using cartesian coordinates (x*, y*), the exact flow is des'ribed by

the following equations

aO, ýUl O' N
- L >_ y D (I),at* P 8y*•'

d92_

- p D > y* 0 (II).

The boundary conditions are, no slip at the walls,

Um (y*=L) = Uo+Acos(wt*),

72 (Y* 0) = 0.

and continuity of velocities and stresses at the interface,

'Ul (y*= D) = 'U2 (y'= D),

fil,-0- y. (V= D) = y.2 -•y ( V = D ) .

The solution is easily found by separation into a steady part and an oscillatory part of tie

same frequency as the plate motion. The basic flow is,

L .2Uoy*-UoD(,u2 - A,) +A{ • +

Ly2- D (y2 - yi) + A lf [LIc(' + L-2('~ ) F(, i

, LJD y /ii) + AR . 2K sinh e(iw1)},

where 1 denotes the real part, /P (ipw•/i 1 )2 and we define the ratio of the lower fluid

viscosity to that of the upper layer by the parameter rn = r2ly. The constants K I. and

L2 are given by

2 sin( cosh (3* ([- I)J + 27n Cosb sinh (:P(D- (L)

31



= exp (-13D)[in 2 cosh (~-)+ siubl -i- (2)

L2 =Kexp(/?SD) [siub(h rn~ 2Cost, (3)
1 / i II I

The flow is non-dimensionalized next with D as lengthscale and U.% as velocity scale, while

time t* and pressure P* are non-dimensionalized by D/Uo and puI respectively. This intro-

duces the following non-dimensional groups (used later also):

L A

UoDp oR' wDR, e Q = -

PI pDUo' Uo

The parameter a measures the relative depths of the two fluids, A measures the magnitude
of the externally imposed oscillations, 0 is a measure of the Stokes layer thickness due to
the oscillatory flow, R, is the Reynolds number, and Q is the non-dimensional frequency of

the plate oscillations. Under these scalings the non-dimensional no-slip condition becomes

Uj,(y=a) = l+Acos(fQt),

u 2 (y=o) = 0,

and the basic flow is:

T-7 1= my-r-+ l + AR {V [L e(Y)+ L2e(_O')]
am - n +1 + +

'U'2 -+ ARZ{2K sinb (-r-)eam - 7n + I I ( '12

The constants K, Li and L2 appearing above are in their non-dimensional foa mis whiclh are

readily available from (1)-(3) by replacing f[3D by /3, When A = 0 we recover the basic

Couette flow of different fluids in a channel (see Yih (1967)).

3 Stability equations.

The equation governing the linear stability of parallel shear flows is the )Orr-SoI.n..rfeld
equation and arises from [inearization of the Navier-Stokes equat ions antd a normal rood(e

expansion. In the present problem the background flow is tinie-detpc(enuht and so the eigen-

functions depend both on t. and y. In particular, the pertul rhatil o strealinllfne i)oll is ak-ell to
have the form n 01,2 (.ry tY) 0 (1,2 (y C,) eir where o is the wa ven'imlTr of thme ulis (iTrhIaume and

subscripts 1,2 deniote quaiiti ties in regions (1) and (II) resl)ectivelvy. The sca i lit v eq,,ali. tus
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in regions (I) and (II) are, then,

_ a 2) 0 , _ I 1CV ,a W + a = ( 4 a )0y2  Re 0 y4

iCq52 [- - 2a 2 22+42(4b)

(a¢ ýý '. 0y4 + "

The linearized boundary conditions are

0,(a) 0 o= 1 (a), (5)

02 (0) =0 = (0). (6)

We now let the interface position be y = 1 -t- .5h (t) e•' where b << 1 is the infinitesimally

small amplitude of the perturbations. The linearized interfacial conditions are found by

expansion of the exact conditions about y = 1 in powers of 8 and retention of the leading

order contributions:

€1= 0, (7)ai o--0- + h (1-M) au ' (8)
ay_ i- 0) -mOy

042 +2 2 = m [ -2 + C,2 2 1, (9)

3a~ 2a 2h0  - R, + 0iaý6
aQ34 20Y) _9 a0tay a

0y3 - 5 y y aOyOt Oy

+ ih-. (10)R e

The linearized kinematic condition at y = 1 reads

dd + iah-Ui + iao, =0. (01)

Equations (4-11) constitute the partial differential system together with boundary condi-

tions that governs the stability of the flow. The problem contains time and one space variable

and in general requires integration in time as an initial boundary value problem. Stability or

instability is determined by the large time evolution of initial perturbations corresponding

to different wavenumbers.

In this work we proceed analytically by studying the stability characteristics of long

waves (a << 1). Such analysis provides a significant amount of information since it enablhs
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development of closed form expressions which can be used to check whether unsteadiness ii,

the background flow can affect the evoiution of linear perturbations. In the (ou( tte prolbleii

studied by Yih (1967), instability was established for all Reynolds numbers by an analogous

long wave expansion. The analysis of long waves is also ui-eful in guiding numerical s(outions

of the initial value problem at general wavenumbers.

3.1 Solution for long waves

We now proceed analytically by considering the asymptotic limit a + 0 which corresponds

to disturbances with long streamwise wavelengths. We use a method similar to the Floquet

theory applied by Yih (1968) to obtain analytically the growth-rate of the disturbance at

the interface. We look for solutions for the streamfunction and interfacial amplitude as a

power series in a << 1 of the form, for j = 1,2,

Oj(y,t) = (Ojo(y,t)+ aoji (y,t)+ ... )exp((Oo+a~ i + ... )t)exp(ikot),

h (t) = (ho (t) + ah, (t) + ... )exp ((Oo + oe0 + .. )t) exp (ikat),

k = ko+ak 1+...

where ko, k, . .. , Oo,O, ... are real conhtaut-, and h0 (t), h, (t) ,... are periodic in time t.

By writing the streamfunction and interfacial deflection in this form, the linear long wave

stability of the unsteady flow can then be determined by calculating the first non-zero 0.

which corresponds to exponential growth or decay of the disturbance to the basic flow.

We now consider the system of governing equations (4a-b) and the boundary and interface

conditions (5-11) to leading order, 0 (1). Firstly the kinematic condition, (11) yields

dh-- =Ooho. (12)
dt

Now since 00 is real and ho is periodic we have two choices: we may take ho = 0 so that 00

is as yet unprescribed, or alternatively 00 = 0 and then, without loss of generality. ho = 1.

We shall in fact assume the latter, since ho = 0 leads to damped modes only as shown later

in Section 3.2.

After making the transformation 'jo = Ojo + -Tj, for each region, j = 1,2. the leading

order system becomes

I -- 10  (13a)
dy20t R, Oy4'

&rP2 0 m 0) ,?/)2o 13b )
dy 2of R, ay 4

1/)1o(y = a,t) = 1 + ,6f +C.C.
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,020(Y= o,t) = 0, (14b)
o--To (Y =ot) M- Oa- - O int" ¢
4910Y amt- m + I f+[0 (Lie - L 2 ea e) + C.c.l (14c)8,am---m+1 12/J

10k2o :7 1 + A Keint + f (14d)-- (y = ot) + [ ..0Yam - m + n12Ln

Here, c.c. denotes the complex conjugate.

At the interface y = 1 we have

0 10 = 0 20 , (15a)
0 (9 2 (15b)

a 2 0 0 = m 42 0 2 0 ( 1 5 c )
C9y2 ay2'

0 - 3 R, •(1020(1)5y3 y ayt
These equations admit solutions of the form:

io = Alo(y- a) 3 + Bio(y -a)' + (y-a) +-- a - m + 1am-m+ 1

+ {[Cosinh(fy) + D, ocosh(j#y) + Eoy + Flo] e"' + c.c.),

0'20 = A2oy3 + B2oy 2 + Y
am - m + 1

+ { [C2o,,sinh (yn) + D20cosh (0YM ± E2oy + F20  + Ic}

The twelve constants are found analytically by substitution into the above boundary and
interface conditions, the resulting equations which determine Ao, AM0 , ... , Flo, F20 are given

in the appendix.
At the next order, 0 (a), the kinematic condition (11) becoiaes

dh(
d- + 01 + i100 (1, t) + ik, 0 (16)

Our solution strategy in obtaining the eigenvalues analytically, is based in part on the per-
turbation eigenfunctions and interfacial amplitude being time periodic. In equation (16)

above, iio (1, t) is the suni of a real constant and a time periodic function, while k)', and

01 are real. In order to obtain periodic solutions hi(t) the following constraints need to be

satisfied,

k, = -,i/(S)(1) = Ao (a- )3 B1o(I - a)' + -) (

am - m +i

• m | n 7



h1  = ] -)1, t) dt,

= -Q-' [C0 osinh (O/) + D1ocosh (/3) + E10 + Flo] * .c,

(17)

where the superscripts (s) and (us) denote the steady and unsteady parts rospectively.

Before solving the 0 (a) system, let us first consider the 0 (a2 ) kinematic condition,

which can be written as

dh2

Using I to denote the imaginary part, we see that for h2(t) to be periodic in t we require,

02 =I fhi, + 0,(1)] (.

Clearly then it is sufficient to solve for the steady part of tile eigenfunction 01, to 0(a)

in order to determine 02 and hence the linear stability of the interface. We note that at

this order, products of functions which have a time dependence given by exp (±Iqt), yield

additional steady terms in the governing equations and boundary/interface conditions. The

eigenvalue 02 is therefore determined by both the steady and time oscillatory motionl of the

interface. The time independent perturbation equations are given by

1 _4) [(k +U, 810k° d2Ui010 (18a)

R, 094 -y2 9y2 )

r7n 040_3_ [2(20 a P20 (lb- 1f = [(k- + 1 2 ) o20 (18b)

They admit a particular solution

Sil'laa e"[(l--V)" " " ko01 a17 iOV(s)

Xii = R [ok +-) 010 ' /'I dydydy, (19a)
dy dy

jl,,-,, fi ,o i,o -\ dipo db ,
X21 z=Ilit0 J 1 1 k, + Tb2) ' - 0120 a J dydydy, (19b)

so that the general solution of equations (18a-b) is

¢1) = A,, (y - 1)3 + B,, (Y _ 1), + (7,, (Y, - 1) + I,], + N1,,

A A 21 (y- +) B-2 1 (y- 1) " '21 (y - 1) + D[21 + k21.

The eight, constants are found by applying the following boundary and inter'acc conditions:

b1t (y = a) = 0,

8



0( ) = 0 ,

21= 0,o (y a ) 0 ,
ay

°•'--••("J = ) = ,
ay 08)1128 O! -= 0,

11 0 (Mn,- 1) 21

o-7 = m-- . W

y2 ay2 ,

+1 R 1 - R[id - + +i ,02o -

""I (+ RL ik.9 + iU2-902 - i02'9

The above solutions and boundary conditions provide a system of eight inhomogeneous

algebraic equations for the eight constants All,A 21,..., D11, D21 and are solved explicitly

here, (see appendix).

3.2 Damped disturbances

Before presenting the results of the calculation of the eigenvalue 02, we show that the possi-

bility ho = 0 yields damped waves. To achieve this we write the leading order streamfunction

as

Oj0 = Qj (y)exp (00t), where j = 1,2.

This satisfies the equations

cPQ1  d4Q, (20)
-y2 dy- .

a&Q2 d4 Q2 (21)
R,--y2 dy4

which are solved subject to

dQ1
Q () = d---- (0) = 0,

dQ2

Q2 (a) = N- (a) = 0,

Q. (1),= Q= (1),

9



(/1Q() dQ= (
fly dy

d2Q1  _ dQ 2

di l R 0d ,(1)/

d dQ1  d3QI dQ2

(1 -RO---(1) - •()

dYQ (1- •Oo-d)dy(=, 1dO 2 (1) - R•O 0 - (1)d--

Multiplying (20) and (21) by d-1 and "' respectively, integrating between (0 and ,•, and

imposing the above boundary and interface conditions yields

RA9 - < 0.
[f'l • dy + fj" dy]__

Hence all disturbances are damped for this case.

4 Results

The non-dimensional parameter A is the magnitude of the sinusoidal oscillations of the

upper plate relative to the magnitude of the steady velocity. When A = 0. this problem

reduces to that of steady plane Couette flow of two superposed fluids of differing viscosity,

(as characterized by the ratio 7n).

As an initial check on the validity of our analysis we firstsi consider this steady case. which

corresponds to the problem solved by Yih (1967). In order to make a direct comparison of the

results we must first note that the length scale used by Yih (1967) is equivalent to (L - D)

whereas in this work we use the lower fluid depth D. Yih also defines a parameter it = d2/d,

the depth ratio of the lower to upper regions, a brief calculation shows that n _= (a - I )-1. In

view of these notational differences the Reynolds number and streamwise wavenumber are not

the same as their counterparts defined in this work, we must first make the transformations

ayi, -- nci and Ryi, --* nR,, we hence write J (in,a, A = 0) = R 1 (a - I)- 02.

Calculation of 02, and hence J, is in theory an analytical task, in practice however, the

twenty constants obtained in the integration of the 0 (1) and 0 (c) systems, are lengthy

expressions which are found most efficiently by use of a symbolic algebra package, For

completeness, the simultaneous equations which determine these constants are given in the

appendix.
For a giwd viscosity ratio i p, depth ratio a. freiencvy 12 and magnitude A. the value of 02

is calculated. When the real Floquet exponent. 0.2 > 0 the (list iirhance to theo basic flow will

grow exponentially in time and the flow will be utnstable, similarly ntegative 02 corresponds

to a damped interfacial disturbance, and the flow is said to be linearly stable.

(I0



Figures 1(a) and 1(b) plot the values of J against in for a steady flow, (A = 0). whenl t!;e

lower fluid is more viscous than the upper layer. We have chosen equivalent depth ratios to

those illustrated by Yih (1967), the results are identical.

Figure 1(a) corresponds to a flow in which the uppe, layer is deeper, for a more viscous

lower layer the growth rate is positive and the flow is always unstable. With a shallower

upper layer, Figure 1(b) indicates that there is a region of stability, depending on the size of

the viscosity ratio, although for sufficiently large in the flow will become unstable.

For unequal depths of fluids the growth rate tends linearly to zero as i approaches unity.

since this is a hidden mode for flows of equal viscosities.

To obtain results for a less viscous lower region, we have verified the following transfor-

niation given by Yih

mJ (m, n, A =0) =n 2 J1 'A-O= wheren=(a-l)-'. (22)

The results for the steady flow when the more viscous fluid occupies the upper region can

then be inferred from Figures 1(a) and 1(b).

Before discussing the results for the full time-oscillatory problem, let us first investigate

this property in more detail. Yih observes that the phase speed of the disturbed flow,

(c. using his notation), is equal in magnitude and opposite in sign when the viscositfles

and depths of the fluid layers are interchanged. This is because, the original flow may

be recovered identically by making a Galilean transformation from the coordinates (x. y, t)

to (ý, y,t,), where . = x - t, hence ( o , a _ ) The upper boundary

now becomes stationary, (relative to the moving frame of reference), and the lower plate

moves with constant velocity - 1. Since gravity is neglected for this problem, inverting the

geometry leaves the eigenvalue, and hence the stability characteristics, unchanged. In order

to compare the growth-rates quantitatively however we must note that now the Reynolds

nimber, R, = UoDp/lti, and lengthscale D must be rescaled on the nlew upper fluid. hence

the multiplying factor n2 /in, as given by equation (22) above.

We now consider the problem when A j 0, the flow is dependent upon the time t and

analogous conclusions fro-n: a change of reference fi-,i- do not hold and so for completeie.ss

we also need to consid,-r arrangements when when the lower fluid is less viscous than the

upper layer. Since the unsteady contribution is periodic, we need only consider A > 0. In

fact it is clearly seen that A is a multiplicative factor in the basic flow, ol0, o-2o and also h1 .

and these terms contribute to 02 as products, thus -A gives ideintical results.

When the lower fluid is more viscous, m. > 1, the interface is destabilized by the intro-

(luction of an unsteady basic flow. Figure 2(a) shows that for a = :3.5 the already unstable

steady mode, (broken liie), is mnade more unstable upon increasing the nia gm itmhde of the

II



oscillations. Similarly, when the lower fluid is deeper, for example a = 1.4, so that in tht

absence of background time periodic modulations the flow is stable for moderate m at least.

the interface is again destabilized as indicated by Figure 2(b). The value of m below which

the flow is stable, decreases as A increases, for example when A = 0.2, the neutral distur-

bance is obtained for a viscosity ratio in - 86.2319, whereas for A = 0.4,. m - 66.2506. This

is shown more clearly by the neutral curve in Figure 3: if the magnitude of the oscillations

increases beyond the critical value A - 0.5695, the interface is unstable for all mn > 1.

When the lower fluid is less viscous, m < 1, the results are more significant. For all

depth ratios we find that the time-dependent oscillations dramatically stabilize the interfacial

disturbance. For a deeper upper layer, for example a = 2.25 as in Figure 4(a), the range of

viscosity ratios m, for which the real growth rate is negative is increased for the unsteady

background flow and as A is increased the flow is stabilized further. Figure 4(b). illustrates

how the unstable steady mode corresponding to a shallow upper laver, can be completely

stabilized provided A is made large enough. Such behavior is shown collectively in Figure 5

which can be used to predict oscillation amplitudes which completely stabilize the flow for

given depth ratios a. Figure 5 depicts the variation of neutral stability pairs in. . for three

different depth ratios. In each case there is a global maximum oscillation amplitude above

which the flow is linearly stable for all viscosity ratios. For example when the depth ratio is

a = 1.4 we see that the flow is stable if A > 0.6412 (approximately).

Finally we quantify the effect of varying the frequency of the oscillations, through the

non-dimensional parameter 92. Increasing the frequency reduces the effect of the unsteady

terms and the stability of this fluid regime becomes comparable with that of steady plane

Couette flow, (denoted by the broken line). These stability results can be understood by

consideration of the unperturbed flow at high oscillation frequencies. In such a regime the

flow separates into a Stokes layer in the vicinity of the oscillating wall, and away from

this layer the flow is steady and corresponds to two phase Couette flow due to a boundary

which moves with constant velocity. As long as the Stokes layer is thin compared to the

thickness of the upper layer, therefore, the interfacial mode is expected to be Insensitive

to the wall modulations as indicated by our numerical results. The Stokes layer thickness.

in nondimensional terms, is proportional to R-e'/ Q! 1/, and for the highest values of Q

used in Figures 6(a)-(b) the ratio between the Stokes layer thickness and the distance of

the unperturbed interface from the wall is al)l)roximately 0.025 and 0.25 respectively for a

unit Reynolds number, confirming the arguments given above. Oin the ot her liaiid. as Q is

red uced the stabilizing or destabilizing tendencies characterized by A > 0. are e'mphasized.

as shown by Figures 6(a) and 6(b(. )1. It call Ie concluded, therefore. that from a practical

point of view. stabilization due to time harmonic nmodihlatioms is likely to occiur as lon as

12



the modulation frequency is not too large.

5 Conclusions

We have considered the effect of the inclusion of time harmonic modtulations in Ihe inipc-

turbed velocity field of two phase (Couette flow of differeint liquids. Our main aim iP the

demonstration of the stabilizing effect that such inodulations can have on otherwise interfa-

cially unstable flows, a finding that can have useful practical applications. To this end. we

considered the unsteady partial differential stability system in the limit of long waveleng-th

perturbations which can be solved exactly by use of Floquet and perturbation theory to

yield analytical expressions for the first non-zero Floquet exponent which governs stability

or instability. The main conclusion of this study is that inclusion of modulations with an

amplitude larger than a certain parameter-dependent threshold. can completely stabilize

flows which are unstable in the absence of modulations; for instance flows with the more

viscous fluid occupying a thin layer and bounded by the moving wall can be completely

stabilized for long waves, at least. At the same time, modulations can produce an adverse

effect on the inteifacial mode. Flow arrangements which are stable or unstable can become

unstable or more unstable respectively. Finally, we emphasize that the conclusions of this

work are valid for long wavelength perturbations which are useful in providing analytical

solutions to a problem that needs to be addressed numerically in general. Further more. the

physical conclusions reached for the long wavelength limit are expected to be indicative of

the behavior of general wavelength time periodic perturbations.

1:



Appendix

For the solution of the 0 (1) system (13a-b), we impose boundary and interface coilditivnS

given by equations (14a-d) and (15a-d). These yield the following twelve equationus. which

determine the constants Alo, A 20, ... , Flo, F20 :

Alo - mA2o = 0.

;3A 1o (1 - a) - 3mA 2o + Blo - inB 2o = 0,

Alo(1-a)3 -A 2o+Blo(1-a) 2-B2o = 0.
rn- 1

3A 1 o(1 - a)2 - 3A 20 + 2B1 o(1 - a) - 2B 2o + m-= +.am - ?n + I

Ejo-E 2o = 0,

Flo -Fo = 0,
Flo0 + D20 = 0,

A
Cl0 sinh (3a) + Dio cosh (/3a) + E10a + Flo - - = 0,

2

2 [Lle(Oa) - =~(ia i3C~~cosh (/a) + 3D10 sinh (fla) +Elo.

/3-2C20 + E20 = f3n-A½K,

C10 sinh (/3) + DI0 cosh (/3) = C2osinh (07m-) + D20 cosh (3mr-)2

Clo cosh(/) + DI0 sinh (/3) = m-2 [C20cosh (#m-1) + D 20 sinh (37n )].

At 0 (a) the solution of (18a-b), requires a further eight equations, to determine the constants

All, A 21, ... , D 11, D21:

All - mA 21 = 0

All(a- 1)3+B (a - 1)'+C11(a-1)+D +x(a) = 0,

3Au,(a- 1)2 +2BI,(a-1)+Cu1+ '(a) = 0,

-A 21 + B 21 - C21 + D21 + X21 (0) = 0

3A 21 - 2B 2 1 + C21 + -O1 (0) = 0,

DOn - D21 + xi (1) - <2 1 (1) = 0,

Cxu a , 21 (1) + (M- 1) hi ax, = 0,ay y I7 9

2B, - 2m B21 + --2XI- (1) _ M--2- (1) = 0.

Where Xii and X21 are the particular solutions defined by equations (19a-b).

14



References

[,1 Davis, S. H. 1976 The stability of time-periodic flows. Ann. Rev. Fluid Me'h., 8. pp.

57-74.

[2] Grosch, C. E. and Salwen, H. 1968 The stability of steady and time-dependent plane

Poiseuille flow. J. Fluid Mech., 34, pp. 177-205.

[3] Hall, P. 1975 The stability of Poiseuille flow modulated at high frequencies. Proc. R.

Soc. Lond., A344, pp. 453-464.

[4] Hooper, A. P. and Boyd, W. G. C. 1983 Shear-flow instability at the interface between

two viscous fluids. a.-Fluid Mech., 128, pp. 507-528.

[5] Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids:

Thin layer effects. Phys. Fluids, 28(6), pp.1613-1618.

[6] Renardy, Y. 1985 Instability at the interface between two shearing fluids in a channel.

Phys. Fluids, 28(12), pp.3441-3443.

[7] Renardy, Y. 1987 The thin-layer effect and interfacial stability in a two-layer Couette

flow with similar liquids. Phys. Fluids, 30(6), pp. 16 2 7-16 37 .

[8] von Kerczek, C. H. 1982 Instability of oscillatory plane Poiseuille flow. .). Fluid Mech.,

116, pp. 91-114.

[91 von Kerczek, C. H. 1987 Stability characteristics of some oscillatory flows -- Poisenille.

Ekman and films. Instability of Time Dependent and Spatially Varying Flows, D.L.
Dwoyer and M.Y. Hussaini, Eds., Springer-Verlag.

[10] Yih, C.-S. 1967 Instability due to viscosity stratification. .J. Fluid Mech.. 27. pp. 337-

:352.

[11] Yih, C.-S. 1968 Instability of unsteady flows or configurations Part 1. Instability of a

horizontal liquid layer on an oscillating plate. .. Fluid Mech., 31. pp. 737-7.51.

15



Fig. 1 (a) Steady Growth With Deeper Upper Layer
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Fig. 1 (b) Steady Growth With Deeper Lower Layer
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Fig. 2(a) Unsteady Effects: a=3.5, 0=1.0, m->1
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Fig. 2(b) Unsteady Effects: o=1.4, Q=1.0, mA,>
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Fig. 3 Neutral Curve: o=1.4, 0=1l.0, m>l
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0.0010 Fig.4(a) Unsteady Effects: a=2.25, Q= 1.0, m
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Fig. 4(b) Unsteady Effects: c=1.4, 0=1.0, m<l
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F'Ig. 5 Neutral Curves: a= 1.3, c=1.4, c=1.5, 0=1-0O, n< 1
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Fig. 6(o) Frequency Effects: o= 1 .4, nn> 1
0.0010

0=0.4

0 .0 0 0 0 . ......... ... .. . .. ..... ..... .... .... ... ..... ..... .... .... ... ...... ... .. .. .... .. .... ... . .. ..., .. ... .. .... ..

. . . .. . .. .. .. . .. . .. . .. . . ..... . .... . . .

, Q=O00

-0.0005 =0.

-0.00100 /-*//-

-0 v_€.0 0 € 1 ...A................ .......... .................... .... ..... .... . .. .. .... ....... .......... . . . .

* /

. /
/,

* . /

//

/"

//I ." /
/ .

-0 .0 0 15 ............ ....\ /../ ...

-0.0020 I

0 20 40 60 80 100 !20
Viscosity Ratio m

24



Fig. 6(b) Frequency Effects: o=2.25, m<l
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